首页 > 红相博客 > 热成像原理

热成像原理


热成像是一种被称为“红外热成像”的神奇技术,能够将热辐射图像转换成可见光图像。


热成像原理,它能让人们看到过去看不到的东西。实现这一转换的设备称为热像仪,通过这个热像仪,可以让我们在漆黑的夜里看到有如白天的景象。

下面我们来说说热成像原理:

自然界中的物体,除了具有我们所熟悉的可见光图像外,还具有一种红外热辐射图像,但人的肉眼看不到红外热辐射,这是因为它所发出的是红外线,为不可见光。

如今,一种被称为“红外热成像”的神奇技术能够将热辐射图像转换成可见光图像,它能让人们看到过去看不到的东西。实现这一转换的设备称为热像仪,通过这个热像仪,可以让我们在漆黑的夜里看到有如白天的景象。下面我们来说说热成像原理:

一.热成像原理基础篇

我们来看看热像仪是如何完成这一转换的。光机扫描机构将红外望远镜所接收的景物热辐射图分解成热辐射信号,并聚焦到红外探测器上,探测器与图像视频系统一起将热辐射信号放大并转换成视频信号,通过显示器人们就可以看到一幅幅神奇的画面。热像仪能够在几百分之一摄氏度内识别出温度的微小差异。

热成像技术是根据所有物体都发热这一事实来实现的。尽管许多物体从外表看不出什么,但在其上仍有冷热之分。借助热图上的颜色我们可以看到温度的分布,红色、粉红表示比较高的温度,蓝色和绿色表示了较低的温度。

二.热成像原理科学篇

所有不处于绝对零度的物体,均会发出不同波长的电磁辐射,物体的温度越高,分子或原子的热运动越剧烈,则红外辐射越强。辐射的频谱分布或波长与物体的性质和温度有关。衡量物体辐射能力大小的量,称为辐射系数。黑颜色或表面颜色较深的物体,辐射系数大,辐射较强;亮颜色或表面颜色较浅的物体,辐射系数小,辐射较弱。

人眼仅能看到很狭窄的一段波长的电磁辐射,称为可见光谱。而对于波长在0.4um以下或0.7um以上的辐射,人眼则无能为力了。电磁波谱中红外区域的波长在0.7um~1mm之间,人眼看不到红外辐射。

现代的热成像装置工作在中红外区域(波长3~5um)或远红外区域(波长8~12um)。通过探测物体发出的红外辐射,热成像仪产生一个实时的图像,从而提供一种景物的热图像。并将不可见的辐射图像转变为人眼可见的、清晰的图像。热成像仪非常灵敏,能探测到小于0.1℃的温差。

工作时,热成像仪利用光学器件将场景中的物体发出的红外能量聚焦在红外探测器上,然后来自与每个探测器元件的红外数据转换成标准的视频格式,可以在标准的视频监视器上显示出来,或记录在录像带上。由于热成像系统探测的是热而不是光,所以可全天候使用;又因为它完全是被动式的装置,没有光辐射或射频能量,所以不会暴露使用者的位置。

红外探测器分为两类:光子探测器和热探测器。光子探测器在吸收红外能量后,直接产生电效应;热探测器在吸收红外能量后,产生温度变化,从而产生电效应。温度变化引起的电效应与材料特性有关。

光子探测器非常灵敏,其灵敏度依赖于本身温度。要保持高灵敏度,就必须将光子探测器冷却至较低的温度。通常采用的冷却剂为斯太林(Stirling)或液氮。

热探测器一般没有光子探测器那么高的灵敏度但在室温下也有足够好的性能,因此不需要低温冷却。

三.热成像的应用

从第二次世界大战开始,热成像技术就已应用在军事上。由于这种仪器是靠热辐射来工作的,它能够透过漆黑的战场让士兵们清楚地看到敌方的行踪。又由于它为无源性接收系统,比无线电雷达等可见光装置更安全、隐蔽。

热成像技术已经广泛应用在日常生活当中。一个重要应用是诊断疾病,大家都知道,当某一部位出现炎症时,体温会升高,测量体温能够判断有无炎症,但不能确定炎症的具体位置,而热像仪可以直观给出人体温度场分布图,将病变的热图与正常热图比较,就可以从异常变化上诊断病的部位。热成像技术也能在手术室大显身手。当血液流经刚刚被安置的动脉血管时,热像仪上的动脉管的颜色由灰变白,而在通常情况下,肉眼是很难观察到血管是否畅通无阻的。

与诊断疾病类似,高压输变电的电器部件、火车轴箱、电路板等出现故障,也可以用热像仪直接观测检查,避免故障带来的损失。热像仪也可以用于地质调查,地热探查,森林植被分布,大气与海洋监测,火灾的发现与救援。热像仪可以帮助救援者发现那些被浓烟和黑暗隐僻住的遇难者,从而救出他们。

热成像技术还能帮助科学家们进一步探索宇宙的奥秘。可以预期未来热成像技术的应用领域将会得到更充分的开发,推广和普及。

文章来源:百度百科

我要评论

Your email address will not be published. Required fields are marked *

上一篇:电力巡检机器人的主要作用

下一篇:红外热成像的工作原理是什么?

Back to list